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Abstract 

Monitoring the growth of student learning is a critically important component of modern 

education. Such growth is typically monitored using gain scores representing differences 

between two testing occasions, such as prior to and following a year of instruction. The current 

paper examines the precision of gain scores, and hence their potential meaningfulness, within an 

item response theory (IRT) framework. The conditional standard error of measurement (CSEM) 

of the gain score, calculated as a simple function of the component scores from which the gain 

score is derived, is used to evaluate gain score precision under two different conditions. In the 

first condition, an example vertical scale is developed using state testing program data to 

demonstrate that large variation in measurement precision is to be expected when reporting gain 

scores. Several graphing techniques are utilized to depict visually how measurement precision 

varies across the distribution of proficiency. In the second condition, adaptive testing is 

demonstrated to substantially improve the measurement precision of gain scores in comparison 

to traditional, fixed testing. The potential benefits of adaptive testing for gain scores are 

discussed, as are the real-world limitations.  
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Growth, Precision, and CAT: An Examination of Gain Score Conditional SEM 

Measurement of student growth in learning is an important topic for K-12 state testing 

programs, both in terms of school accountability as well as for reporting progress of individual 

students. Recently, Ho (2007) provided a brief status report of growth models in the field of 

educational measurement, citing a surging interest in growth modeling that is likely to continue 

given draft reauthorization proposals for the No Child Left Behind Act (NCLB) that prominently 

feature growth models. Despite this surge, however, relatively less attention has been given to 

whether reported measures of growth are precise enough to be meaningful and useful. For 

example, it has been acknowledged that tests built for school accountability under the NCLB 

status model are unlikely to provide ideal measures under a growth model (e.g., Steering 

Committee of the Delaware Statewide Academic Growth Assessment Pilot, 2007). Most non-

adaptive proficiency tests (i.e., those consisting of fixed, predetermined content), such as those 

designed to assess students’ knowledge, skills, and abilities vis-à-vis grade-level academic 

standards, measure the central part of the proficiency distribution much more precisely than the 

extremes of the distribution. In many cases, the non-central regions will be measured poorly. As 

a consequence, growth scores for students scoring above- and below- average will be less precise 

than for students whose scores are near average. Furthermore, when selecting a measure of 

student growth it is important to consider the inherent precision of the measure. A common way 

to represent growth for a particular student is to simply take the difference between the student’s 

current year score and their previous year’s score. Assuming the two scores are on the same 

scale, the difference can be thought of as the amount the student has “gained.” Although policy 

makers find gain scores appealing because the scores are easily understood by stakeholder 
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groups, psychometricians have long questioned the reliability of gain scores. The issue of score 

precision is important because even the most elaborately designed vertical scale or growth model 

will be useless if the scores reported from it lack precision. 

In this paper, the precision of the most basic of growth measures, the simple gain score, is 

examined within an item response theory (IRT) framework. Because comparatively little of the 

vast psychometric literature on gain scores has approached the subject from an IRT perspective, 

some background on IRT gain score precision is provided. To this end, we explain that the 

conditional standard of error of measurement (CSEM) of the gain score is calculated as a simple 

function of the individual CSEMs of the two component scores from which the gain score is 

derived. Next, the variation in measurement precision that can be anticipated when reporting 

gain scores is demonstrated by developing an example vertical scale (for equating test scores 

across multiple grade levels) using item parameter estimates from a state testing program. This 

variation, we argue, likely renders non-informative any vertical scales developed from 

conventional (non-adaptive) tests due to lack of score precision. Finally, in another 

demonstration using item parameters from a state testing program, gain scores from a computer 

adaptive test (CAT) are compared to those from a non-adaptive version. Discussion of the 

potential benefits of CAT and the likely limits of those benefits is provided. Although the main 

context for the paper is vertical scales in K-12 assessments, the methods employed to investigate 

gain scores apply to any situation where IRT-based gain scores are used. 

Study Design 

Gain Scores 

Scores calculated by subtracting the test results of the same student on two separate 

occasions has been called by several names in the literature, including change, difference, 



 Growth, Precision, and CAT 5 

deviation, gain, growth, or progress scores. The classic pretest-posttest experimental design is a 

common example of a difference score; in this design, the same measure is taken of subjects 

before and after a treatment condition, with the difference between measures taken as an 

indicator of treatment effect.  

Difference measures are commonly used in testing. In the K-12 state testing arena, an 

important difference measure is the growth or progress a student exhibits from one year to the 

next. The simplest growth comparison for an individual student is to compare current year’s 

scores with previous year’s scores for particular subject areas. If a common scale can be 

established between grade levels with a vertical scale, a student’s scores from two different years 

can be directly compared. The difference between these scores on the vertical scale represents 

the demonstrated change in student proficiency on the measured constructs and is often referred 

to as the student’s growth or progress score. In this paper, the term gain score is adopted. 

As described by a number of authors (e.g., Singer and Willett, 2003, p.10; Willett, 1997), 

simple difference or gain scores are limited as tools for studying change. A score based on the 

difference of just two measures, even two reasonably reliable measures such as successive end-

of-year NCLB tests, is unlikely to fully and precisely measure the individual growth experienced 

by each student. Although end-of-year tests tend to be quite broad in their content coverage, it is 

unrealistic to expect a single test given on a single occasion to fully measure the knowledge, 

skills, and abilities gained by a student in a given school year. Also, while end-of-year tests are 

typically reliable enough to provide a reasonable rank ordering of students, the difference of two 

measures is generally less reliable than the measures themselves, as discussed below. More 

powerful procedures for measuring change can be employed when data are collected from three 

or more points in time. One advantage gain scores do have, however, is the ease with which they 
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may be explained to lay audiences. Because of the intrinsic simplicity of gain scores, they may 

be advocated for policy reasons and thus it is important to examine the limits of gain score 

measurement precision. If nothing else, such an examination can help inform when the gain 

score will be too imprecise to be useful. 

The inherent reliability of gain scores has long been a controversial topic in 

psychometrics. Most of the literature examining this issue has focused on the classical test theory 

representation of gain scores, namely  

 ,111 ETS +=  (1) 

 ,222 ETS +=  (2) 

 ,121212 EETTSSG +==  (3) 

where S, T, and E designate the observed, true, and error scores respectively, G represents the 

gain score, and the subscripts refer to either the first or second testing occasion. As shown in 

Equation 3, both true and error components are subtracted to determine gain score variance. 

While subtracting true scores generally diminishes true score variance, subtracting uncorrelated 

error scores adds to error score variance. This combination of effects tends to greatly diminish 

reliability (but see Williams and Zimmerman, 1996, who show this result is not inevitable).  

The current paper presents the point of view espoused by Mellenbergh (1999) and 

Fischer (2003) that while reliability can be a useful measure, it is a relative rather than absolute 

indicator of a test’s measurement precision. By definition, reliability is the ratio of true score 

variance to total variance, and can be represented as a ratio of true variance to error variance. For 

example, Table 1 gives the ratio of true to error variance (sometimes called the signal-to-noise 

ratio) for selected reliabilities. Reliability does not, however, indicate the absolute value of the 

error variance, which could potentially be low even when the reliability for a certain population 

is low. For example, a particular assessment given to two different populations might result in 
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equal error score variances for the two groups (i.e., the reliability denominator, or noise), but the 

reliability of the scores for the two groups could be markedly different due to true score variance 

differences between the groups (i.e., the reliability numerator, or signal). 

Table 1. 

Example Reliability and True Score Error Variance Ratio Values 

Reliability 
Ratio of  true to 

error variance 

.9 9:1 

.8 4:1 

.7 7:3 

.6 3:2 

 

In contrast to the classical test-derived reliability measure, the IRT conditional standard 

error of measurement (CSEM) provides an absolute measure of test precision for a given score 

scale. It has the further advantage of varying as a function of student proficiency, rather than just 

being a single value across all proficiencies. Since test precision can thus be better represented 

across a range of student proficiencies, it is a more appropriate indicator for tests that follow an 

IRT model. 

Despite the potential advantages of obtaining an absolute measure of precision for a score 

scale, only a limited number of studies have taken IRT approaches to studying gain scores. (For 

an excellent review of the change literature, both for classical test theory and for IRT, the reader 

is referred to Wang and Wu, 2004). Of the few IRT studies that have examined change, most 

have focused on the Rasch model (e.g., Fischer, 2003; Wang and Wu, 2004). The current paper, 

however, focuses on the three parameter logistic (3PL) model (Birmbaum, 1968) and its 

polytomous generalizations (for review, see Ostini and Nering, 2005). May and Nicewander 

(1998) used the 3PL model to examine a gain score problem they called scale distortion, which 
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stems from having a pretest that is too easy and thus induces a ceiling effect. They showed that 

IRT scoring, possibly combined with adaptive testing, could reduce scale distortion for gain 

scores. One important, relevant implication of their study is that the vertical scale must be well-

formed and appropriate for the application; a poorly defined vertical scale will likely produce 

poor gain scores.  

Using a different approach, Nicewander (1991) proposed a modified gain score to 

increase item reliability for pretest/posttest gain scores. The modification, however, is not 

relevant to vertical scales, as it only applies to situations where the pretest and posttest are the 

same. For the traditional gain score, the study found item reliabilities to be extremely small 

except for the case of highly discriminating items accompanied with a large change in 

proficiency. May and Jackson (2005) based their approach on that of Nicewander (1991) and 

explored item level reliabilities for the 3PL model. In general, they found similar results, with 

very small item reliabilities for items with typical or low discrimination (< .05 reliability for a-

parameter values less than 1.5). Their results were taken as further evidence of the inherent 

unreliability of gain scores. Both the Nicewander (1991) and the May and Jackson (2005) papers 

highlight the potential lack of gain score precision that may occur for low discriminating items. 

However, rather than focusing on item reliability as these studies did, the current study argues 

that using the IRT CSEM is a more effective and powerful tool for studying gain score precision.  

Gain Score CSEM 

In this section of the paper, the gain score CSEM is derived. Following the derivation is a 

demonstration of how the gain score CSEM might look when IRT is the model underlying the 

vertical scale upon which gain scores are based . The context for this demonstration is an IRT 

vertical scale for a state testing program that links adjacent grades from 3-8.  
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The CSEM of gain scores follows the same definition as the CSEM for any score: CSEM 

is the square root of the conditional error variance of the gain score. However, unlike the CSEM 

from a single test score, for a gain score there are two true proficiencies to condition on, the 

previous grade’s theta and the current grade’s theta. As an example, consider the case of gain 

score G, defined as the difference between two scores from two occasions but scaled to a 

common metric. Hence, 

 ,12 SSG =  (4) 

where the subscript refers to either the first or second occasion. For a given pair of theta values 

on the IRT vertical scale, 1 and 2, assume that the error from occasion one is uncorrelated with 

the error from occasion two. The perspective given here is that 1 represents a student’s 

proficiency in year one and 2 represents that same student’s proficiency in year two. The 

conditional error variance of the gain score is then given by, 

 )|()|(),|( 221121 SVarSVarGVar +=  (5) 

The gain score conditional error variance is the sum of the conditional error variances of 

the individual scores. The CSEM of the gain score is the square root of the conditional error 

variance. Therefore, the CSEM of the gain score can be calculated from the CSEM of the two 

individual scores as given by, 

 2

22

2

1121 ])([])([),( CSEMCSEMCSEM SSG += . (6) 

A relevant point taken from Equation 6 is that the CSEM for the gain score must be 

larger than the CSEM from either of the two component scores (assuming these are both non-

zero). In this sense, gain scores must be less precise than the scores that they are derived from.  

Rather than conditioning on the true values from the two component tests, it might seem 

simpler to condition on the true gain. That is, let 
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 ,12 iii =  (7) 

where i is the true gain for student i. A student’s expected gain score equals their true gain. That 

is, in a hypothetical experiment where a student takes the test many times but without the 

influence of practice or learning effects, the average over replications equals the student’s true 

gain. However, the standard deviation across replications for the student will not necessarily 

equal the replication standard deviation for other students with the same true gain. Because 

students with the same true gain may have proficiencies at different points of the theta 

distributions, conditioning must occur at the level of the individual test, rather than on a student’s 

true gain.  

Gain Score CSEM Demonstration 

Thompson (2007) demonstrated how the CSEM of an IRT growth score might work in 

practice using data from two large-scale reading comprehension tests from a state testing 

program. A portion of those results is duplicated here. The two reading comprehension tests used 

were from grades three and four from a state-wide administration in 2006. The tests were mostly 

comprised of multiple choice items, but also included two three-point constructed response 

items. Summary information about these tests is given in Table 2.  

Table 2. 

Summary Information of Tests Studied 

Test 
Total 

points 

Average IRT 

a-value 

Average IRT 

b-value 

Average IRT 

c-value 

Reading grade 3 44 1.09 -0.75 0.19 

Reading grade 4 46 0.83 -1.02 0.13 

 

The two grades were linked through a set of common items that were administered to 

both grades. For clarity of exposition, the actual vertical scales developed for the state in 
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question are not used here. Instead, a slightly simplified version is utilized to serve as an example 

of what would likely be found in practice. The vertical scale is the grade 4 theta scale, with the 

grade 3 theta scores transformed to the grade 4 metric. The grade 3 theta was transformed as 

follows, 

 4.= OldNew . (8) 

It is common for a reported vertical scale to be a linear transformation of the theta scale. 

Because a linear transformation of a scale equally applies to the CSEM, the theta scale is used 

here as the reporting scale. A more complicated method of deriving the reporting scale would 

probably have little effect on the results. Once the IRT CSEM for each grade was found, the 

CSEM for the gain score was found using Equation 6. 

Figure 1 presents a 3-dimensional graph of the CSEM for the theta metric gain score for 

the reading tests. The two lower axes represent true theta for the two grades after grade 3 was 

transformed to the grade 4 scale. The theta scales are plotted from -2 to +2. The vertical axis on 

the plot is the CSEM of the gain score on the common grade 4 theta scale. The perspective given 

is looking down from approximately 45º above the graph. The figure shows that the lowest 

CSEM values are associated with theta values for the two grades in a small region around -1.2 to 

-.6; CSEM values in this range are approximately .4. For theta values between -2 and 

approximately .2 for both grades, but outside the previously described region, CSEM values 

ranged from around .4 to .6. As theta values increased into the positive range for both grades, the 

CSEM increased as well. The maximum CSEM values were found when both grade three and 

grade four thetas were greater than 1.4; the CSEM values for this region were approximately 1.4. 
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Figure 1. Gain score CSEM plotted for pairs of grade 3 and grade 4 reading proficiency. 

 

The surface in Figure 1 results from both grades’ tests having maximal measurement 

precision between theta values of approximately -1.2 to -.6. Both were relatively easy tests for 

their respective populations (as can be seen by the low b-values in Table 2). Because the tests 

worked best for this region of the theta scale, the gain score is also most precise in this region. 

The further away from this region on the graph one goes, the larger the gain score CSEM 

becomes. For tests more centrally targeted, the lowest gain score CSEM values would be closer 

to the center of the distribution. 

A three-dimensional plot such as the one in Figure 1, offers the measurement specialist 

an excellent tool for visualizing gain score precision, especially if the plot is given in grayscale 

or color to highlight CSEM value ranges. To create the CSEM values for each of the desired 

pairs of theta points, only the item parameters for the linked assessments are required. Because 
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widely-available software, such as Microsoft Excel™, can be used to create such 3-D plots, 

special graphing software is unnecessary.  

Another way to visualize the gain score CSEM is shown in Figure 2. In this plot, gain 

score CSEM is plotted against true gain score on the theta scale. As stated before, the lower 

grade’s theta was transformed to the scale of the upper grade before calculating the gain score. 

As can be seen, the CSEM is not constant for a given true gain score, because the same true gain 

score can be obtained from multiple pairings of the two grades’ proficiencies. For example, a 

true gain score of zero represents no growth from the lower grade to the upper grade, but it does 

not specify from which theta value the student failed to grow.  
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Figure 2. CSEM plotted versus gain score for reading tests. 

 

The other striking aspect of the graphs is that the minimum CSEM is around .4 

(corresponding to the small area of points in Figure 1 with gain scores CSEM in the .2-.4 region). 

Thus if a two-standard deviation confidence interval is used with the CSEM, even in the best 

case the gain score interval will vary from -.8 to +.8. On the theta scale, this is a quite large range 
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of values. Although this scale was created for demonstration purposes, the implication is that 

gain score confidence intervals created from these tests are likely to be too large to give precise 

estimates of gain scores. Since the tests in question are fairly reliable measures of on-grade 

performance, the further implication is that gain score confidence intervals may be large for 

many educational tests. Of course, these conclusions depend upon the nature of growth that is 

observed. If the variability of observed growth is large, then reasonably valid comparisons 

between individuals may still be possible. Also, if an individual’s observed growth is much 

larger than the associated CSEM, then we may be confident that the individual did experience 

growth in learning.  

CAT Gain Score Precision  

The overall conclusion from the gain score study was that a vertical scale developed from 

a typical K-12 testing program might support reporting of informative gain scores for some 

students, but that for a large proportion of students gain scores would be non-informative 

(Thompson 2007). This finding is a result of individual grade-level tests not being designed to 

measure all students with equal precision. Equation 6 shows that the gain score measurement 

precision can be no better than the precision of either of the two components that contribute to 

the score; thus, a component score of low precision necessarily results in gain score of low 

precision. One natural way to address the issue of obtaining high measurement precision across 

the proficiency distribution is through adaptive testing (Van der Linden & Glas, 2000; Wainer, 

2000).. Because adaptive testing can increase measurement precision compared to a conventional 

test, especially in proficiency regions where linear tests tend to yield little information, a 

computer adaptive test (CAT) design may enable reliable growth measurement for all students.  



 Growth, Precision, and CAT 15 

A recent simulation study by Kang and Weiss (2007) explored the use of adaptive testing 

to study individual change. In their study using the 3PL model, simulated examinees were 

administered either a 50-item CAT or 50-item conventional test at two points in time. They 

simulated three levels of average growth: .50 (low), 1.0 (medium), and 1.5 (high) theta units. 

They found that the conventional test detected significant change (i.e., non-overlapping error 

bands between two testing occasions) best for the proficiency levels that the test was targeted to. 

The CAT, however, detected significant change equally well across the proficiency scale. In 

addition, the CAT was superior to the conventional approaches in measuring change, in terms of 

correlation with true change, root mean square error, and bias. The results of the study strongly 

supported use of adaptive testing to measure individual change, especially in the medium and 

high growth conditions. Also, the results indicated that gain scores from conventional tests are 

generally not useful for measuring change. 

Two limitations of the Kang and Weiss study limit its applicability to operational large-

scale testing. First, the item selection algorithm in the study’s CAT simulation did not control for 

either content or item exposure. Second, the IRT parameters of the items in the pool were 

randomly generated from an ad hoc distribution, rather than being based on empirical data from 

an existing testing program. To investigate the potential of CAT in the context of a vertical scale 

to obtain precise gain scores across the proficiency distribution, and thus effectively measure 

individual change under real-world constraints, a second study was conducted. A second 

objective of this study was to further highlight how the CSEM function from Equation 6 is useful 

for evaluating the precision of IRT-based gain scores. 
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CAT Simulation Method 

A computer simulation method was used to compare the gain score precision from 

traditional (“paper”) and adaptive versions of a mathematics test. A simulation of a vertical 

scaled adaptive NCLB test was not attempted; rather, data from an existing CAT simulation were 

used. Thompson and Way (2007) created a detailed simulation of a state mathematics graduation 

test to compare several different CAT designs and resulting score comparability with a paper 

version. Although the purpose of that study was different and no vertical scale was simulated, 

these data permitted a realistic CAT simulation consisting of a realistic CSEM function for CAT 

and paper test comparison, rather than use of mocked-up item parameters and hypothetical 

content constraints. These data provided the “upper” grade CSEM for purposes of the current 

study. For the lower grade CSEM, a few assumptions were made. First, as for the grades 3 and 4 

reading tests described previously, the tests from two adjacent grade levels were assumed to 

similarly target their respective populations. Second, CAT item pools for the two grades were 

likewise assumed to be of similar breadth and depth for their respective populations. Finally, it 

was assumed that the hypothetical lower and upper grade tests measured the same constructs, but 

that the theta scale of the lower grade was .40 points lower than the upper grade scale. The .40 

value was chosen because it matched the empirical difference found between the two reading 

tests described earlier and was typical of adjacent grade differences for the vertical scale studied 

in Thompson (2007).  

Thus, the CSEM functions for both the upper and lower grade tests were assumed to be 

identical, except for the adjustment to put the lower grade theta on the upper grade scale. The 

effect of this was that the lower grade paper test measured the lower end of the proficiency scale 

better and the upper grade paper test was superior at the upper end of the scale. Note that a zero 
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theta adjustment would simulate a pre/post test scenario. While the actual growth of students 

going from the lower to the upper grade was not modeled, the assumed scale difference implies a 

lower grade student would need to gain .40 units on the vertical scale to maintain their relative 

standing in proficiency. Note that this level of average growth corresponds closely to the low 

growth condition of the Kang and Weiss (2007) study. 

Relevant details of the procedures and algorithms implemented in the study are described 

below. Alternate algorithms could be considered in future work, but as the study is exploratory in 

nature, conventional, realistic methods were chosen. 

Data and Item Parameters 

Simulations were based on data from a statewide grade 11 mathematics test administered 

in spring 2003. The 60-item operational test consisted of discrete four-option multiple-choice 

items and a small number of grid-in items (about 9%). There were 60 different sets of 10 field 

test items embedded in different versions of the test. 

The initial item pool for the CAT simulations was comprised of the field-test items from 

the paper, a total 600 of items. The 60 operational questions comprised the conventional test 

form to which the CAT results were compared. Table 3 provides the numbers of items in each 

content objective for the operational test and CAT item pool. 

Table 3. 

Numbers of Mathematics Items by Objective Areas 

Mathematics test objective 
# items in 

paper test 

# items in 

CAT pool 

Objective 1 5 47 

Objective 2 5 59 

Objective 3 5 61 

Objective 4 5 61 

Objective 5 5 48 
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Objective 6 7 61 

Objective 7 7 71 

Objective 8 7 81 

Objective 9 5 48 

Objective 10 9 63 

Total number of items 60 600 

 

3PL calibrations, carried out using BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 

1999), were conducted on the item pool and served as both the true parameters and as the 

parameter estimates by the CAT and paper test simulations. That is, estimation error of the 

model parameters was not considered in the simulation.  

Item Selection Algorithm  

The CAT used a fixed length test length of 35 items using maximum information item 

selection control. This value was chosen in the Thompson and Way (2007) study as the test 

length that allowed the CAT to match or exceed the measurement precision of the comparable 

paper test. 

Content Balancing Method. Content was balanced for the 10 objective score areas 

described in Table 3. The goal was for each objective to have the same proportionally 

representation in the CAT as in the paper test. The algorithm selected only items from the “most 

needy” objective at each point in the CAT (ties resolved randomly). Objectives were deemed 

“most needy” when their proportional representation was most dissimilar to the paper test 

content distribution.  

Theta Estimation. The base ability estimation method used was maximum likelihood. 

Until at least one incorrect and one correct response occurred, theta was estimated through a step 

size value procedure. The initial theta was set at -1.0, with theta moving by +1.0 after each 
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correct response or by -1.0 after each incorrect response until maximum (+4.0) or minimum (-

4.0) thetas were reached. 

Exposure Control Algorithm. The Sympson-Hetter exposure control procedure was 

implemented (Sympson & Hetter, 1985). The maximum desired item administration rate was set 

to .15. The calibration of exposure parameters was performed for 20 cycles on samples of 

4000/cycle. The thetas used to generate the response data for each cycle were generated from a 

N(0,1) distribution. 

Other Simulation. Details. Simulated response vectors using 41 true proficiency values 

from -4 to +4 were randomly generated. At each proficiency level, 200 simulated examinees 

were generated. A total of three replications was performed.  

 

Results 

The same pattern of results was found in each of the three replications. For the purpose of 

simplifying the presentation of results, the tables and graphs below report the first of the three 

replications performed as they are representative of the other two. Thompson and Way (2007) 

report on the measurement quality of the 35-item CAT test as compared to the 60-item paper 

test. The reader is referred to that paper for complete details. Briefly, the CAT version was 

shown to have the higher correlation with true theta, higher classification accuracy, less biased 

score estimates, and lower CSEM values compared to the paper version. The CAT also met all 

content constraints, with all item administration rates less than .2.  

Because the gain score CSEM is a function of the lower and upper grade CSEM 

functions, it is informative to compare the CSEM functions for the CAT and paper versions. 

These functions are presented in Figure 3, with the lower grade CSEM functions given on the 
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upper grade scale. The CSEM values for the CAT versions are lower in the extremes, but in the 

center of the scale (from about -.5 to +.5), the CAT and paper results converge. For both the 

CAT and the paper test, the lower grade test measures more precisely in the lower end of the 

distribution and less well at the upper end. The converse is true for the upper grade tests. These 

effects are much less pronounced for the CAT, however. 
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Figure 3. CSEM for CAT and paper test. 

 

The gain score CSEM functions are presented in Figure 4 (paper version) and Figure 5 

(CAT version). The surface for the paper test version is similar to that for the vertical gain score 

from the reading test given in Figure 1; namely, there is a wide range of CSEM values depending 

upon students’ starting proficiencies in the lower grade and their ending proficiencies in the 

upper grade. Unlike the reading test, however, the math test item parameter values seem well 

targeted to the population; this is reflected in the wide center region of the plot that shows the 

two tests are measuring best in middle of the proficiency distribution. Only at the more extreme 

values of theta does the CSEM function become large.  
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Figure 4. Gain score CSEM paper test. 

 

In contrast, for the CAT version (Figure 5), the gain score CSEM is much flatter. Most of 

the theta region has CSEM values less than .4, and no values exceed .6. 
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Figure 5. Gain score CSEM CAT test 

 

Figure 6 and Figure 7 present the gain score CSEM plotted against the true gain. In these 

plots, the lower end is not relevant, as we do not expect many students to have a substantial 

negative gain; we expect the vast majority of student gain scores to fall in the 0 to 2 region. 

Although the CAT version results in a much narrower band of CSEM values than the paper 

version, in the 0 to 2 region of interest there is still a fair degree of variability for the CAT. 
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Figure 6. CSEM versus true gain paper test. 
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Figure 7. CSEM versus true gain CAT test. 

 

To investigate the variability in CSEM values more deeply, +/-2 confidence intervals 

were formed for the gain score of .60. The choice of the .60 value was arbitrary, but illustrates an 

expected gain for a typical student on a vertical scale (note, it is slightly larger than the .40 scale 

difference found by Thompson (2007) for the reading tests reported earlier in the paper). The 
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intervals are plotted for the paper test in Figure 8 and for the CAT in Figure 9. Note that there are 

several intervals plotted, because the appropriate CSEM to use in the interval depends upon the 

student’s lower and upper grade scores. 
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Figure 8. +/- 2 CSEM confidence intervals for .6 gain paper test. 
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Figure 9. +/- 2 CSEM confidence intervals for 6 gain CAT test. 
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Consistent with the other results, the paper test gives similar confidence intervals to the 

CAT for some of the CSEM values, but the intervals are dramatically wider for other CSEM 

values. For the .6 gain score, the smallest CAT confidence interval is .13 to 1.07 and the largest -

.52 to 1.72. This compares to the smallest paper test confidence interval of -.04 to 1.24 and the 

largest of -1.32 to 2.52. In general the widths of the paper test confidence intervals compromise 

the meaningfulness of the gain score. The CAT test has much more consistent interval lengths, 

though there is still some variability. The CAT intervals, as a whole, are also much smaller than 

the paper test intervals, but whether the intervals are small enough to make the gain scores 

informative is somewhat questionable.  

Discussion 

In this paper, the precision of the simple gain score derived from an IRT vertical scale 

was examined. It was shown that the CSEM for the gain score is a straightforward function of 

the two CSEM functions for the lower and upper grade measures from which the gain is 

calculated, and that the gain score inherently must be less precise than the lower and upper grade 

measures. Furthermore, CSEM values can vary for individuals with the same true gain, and for 

conventional tests, CSEM values will vary substantially as a function of eccentricity from 

average score. 

Although the study was exploratory in nature, several broad conclusions are supported by 

the results. The primary point of the paper is that however a growth measure or vertical scale is 

formed, the precision of the resulting scores must be considered. The measurement precision of 

scores based on vertical scales has not been studied sufficiently. Part of the process for 

determining testing program growth score models must be an evaluation of whether reported 

scores will be precise enough to support meaningful decision-making. This point is underscored 
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by the often poor precision of the paper test gain scores. These results agree with much of the 

long history of research on the reliability of difference scores. However, much of the previous 

research focuses on the global and population-dependent reliability measure rather than a 

conditional measure. By using the CSEM, it is clear that measurement precision of gain scores 

can vary greatly within a given pair of tests, with differential impact on students. For example, if 

gains are large relative to the error of measurement, then gains scores are meaningful even if the 

error is fairly large in an absolute sense. Studies comparing typical observed gains for an 

operational vertical scale to the CSEM would provide well-needed empirical evidence for the 

meaningfulness of gain scores. For conventional paper tests, however, the observed gain scores 

are likely to be relatively small compared to the error of measurement.  

Adaptive testing was examined as a possible method of improving the CSEM of gain 

scores to an acceptable level. Here, the findings from the small simulation study were mixed. 

The CAT yielded CSEM values that were both much smaller and more consistent in magnitude 

than for the paper version of the test. However, it was unclear from the simulation whether the 

resulting measurement precision of the gain scores was small enough to make the scores 

meaningful. In any case, given that gain scores are inherently much less precise than the 

component scores, one must start with very precise measures to obtain a precise gain score.  

Whether adaptive testing can yield useful and informative gain scores can only be 

answered on a case-by-case basis. Item pool quality and overall test length will vary in each 

potential setting and, consequently, so will test precision. Kang and Weiss (2007) found that an 

item pool of highly discriminating items with a difficulty span greater than the range of true theta 

worked best in measuring individual change. For example, the 35-item test length of the 

simulated CAT in the current study may have been too short to provide the precision needed for 
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accurate gain scores. A longer test, however, might require a broader and deeper item pool to be 

fully effective and thus be difficult for some assessment programs to support. Studies based on 

realistic settings (i.e., a CAT vertical scale and existing item pool), are needed to determine 

whether adaptive testing can provide precise gain scores for vertical scales.  

Though CAT designs are attractive for a variety of reasons, there are also a few 

roadblocks that stand in the way of using adaptive testing for NCLB. In many school districts 

across the country the computer laboratory facilities are inadequate to support moving to a fully 

computerized statewide testing program. The situation is improving as time goes on, however, 

and many states currently have computer-based statewide tests of some form or another. In those 

states where computer test is currently a viable option, there remain the challenges of migrating 

from computer-based to fully adaptive tests, namely logistic, psychometric, and cost issues. 

Critical concerns such as test security, item bank development and maintenance, and score 

comparability, among others, have been fully discussed in the CAT literature. The feasibility, as 

well as the advisability, of a using CAT for accountability purposes must be addressed on a case-

by-case basis. Nonetheless adaptive testing has been successful in some settings.  

Beyond the issues of hardware availability and logistical issues, a key reason CAT is not 

widely used for statewide accountability tests is that NCLB rules currently mandate that test 

questions be on-level for each grade. This restriction negates a potential advantage of using 

adaptive testing, namely that a CAT item pool would be function best by spanning across grade 

levels. A single pool spanning grades would not only potentially allow for better measurement of 

low and high proficiency students, but it would also likely improve the stability of the vertical 

scale linking the grade-level scales together. 
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One state that has implemented an adaptive model for accountability is Oregon, which 

administers computer adaptive tests in several subjects (Oregon Department of Education, 2008). 

Due to the NCLB restriction stated above, however, Oregon item pools are strictly on-level for 

the grade being tested. Others have put forth arguments for using adaptive testing for 

accountability purposes (e.g., Kingsbury & Hauser, 2004; Steering Committee of the Delaware 

Statewide Academic Growth Assessment Pilot, 2007). Although the current legislation is not 

favorable to adaptive testing, the potential advantages offered by adaptive testing warrant 

exploration. The computer simulation described in this paper is such an exploration. 

Further study of how to best create IRT vertical scales is another important area for 

research. Gain scores are only meaningful to the degree that the model forming the underlying 

scale is accurate. How to best create an appropriate vertical scale, and whether this can be done 

with a unidimensional scale, remain important research questions. Certainly, there are 

researchers who are pessimistic about the usefulness of vertical scales (e.g., Schafer, 2006). A 

major conclusion from the current study, however, is that even if the psychometrics challenges of 

constructing valid IRT vertical scales are overcome, gain scores from such scales may be too 

imprecise to be meaningful. While a poorly constructed vertical scale clearly cannot be expected 

to yield useful scores, a well-defined vertical scale in and of itself does not guarantee that 

reported individual scores will be precise enough to be support meaningful decision-making.  



 Growth, Precision, and CAT 29 

References 

Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee's ability. In 

F.M. Lord & M.R. Novick, Statistical Theories of Mental Test Scores (pp. 395–479). 

Reading, MA: Addison-Wesley. 

Fischer, G. H. (2003). The precision of gain scores under an item response theory perspective: A 

comparison of asymptotic and exact conditional inference about change. Applied 

Psychological Measurement. 27, 3-26. 

Ho, A. (2007). Growth models under NCLB: Back to basics. NCME Newsletter, 15(4), 5-7. 

Kang, G. K., & Weiss, D. J. (2007, June). Comparison of Computerized Adaptive Testing and 

Classical Methods for Measuring Individual Change. Paper presented at the GMAC 

Conference on Computerized Adaptive Testing, Minneapolis, MN. 

Kingsbury, G.G. & Hauser, C. (2004, April). Computerized Adaptive Testing and No Child Left 

Behind. Paper presented at the annual meeting of the American Educational Research 

Association, San Diego, CA. 

May, K., & Jackson, T.S. (2005). IRT item parameters and the reliability and validity of pretest, 

posttest, and gain scores. International Journal of Testing, 5, 63-73. 

May, K., & Nicewander, W. A. (1998). Measuring change conventionally and adaptively. 

Educational and Psychological Measurement, 58, 882-897. 

Mellenbergh, G. J. (1999). A note on simple gain score precision. Applied Psychological 

Measurement, 23, 87-89. 

Nicewander, W. A. (1991, May). The Conditions Under Which Gains in Achievement can be 

Accurately Measured and a Reliability-enhancing, Non-linear Transformation for the 



 Growth, Precision, and CAT 30 

Ordinary Difference Score. Paper presented at the Model Based Measurement Workshop, 

Educational Testing Service, Princeton, NJ. 

Oregon Department of Education (2008). 2007-2008 Technical Report: Oregon Statewide 

Assessment System. Retrieved November 21, 2008, from 

http://www.ode.state.or.us/search/page/?=1305. 

Ostini, R., & Nering, M. L. (2006). Polytomous Item Response Theory Models. Thousand Oaks, 

CA: Sage. 

Schafer, W.D. (2006). Growth scales as an alternative to vertical scales. Practical Assessment, 

Research & Evaluation, 11(4). Available online: http://pareonline.net/pdf/v11n4.pdf. 

Singer, J. D. & Willett, J.B. (2003). Applied Longitudinal Data Analysis: Modeling Change and 

Event Occurrence. New York: Oxford University Press. 

Steering Committee of the Delaware Statewide Academic Growth Assessment Pilot (2007, 

October). A More Accurate Growth Model: Using Multigrade Adaptive Assessments to 

Measure Student Growth. Retrieved November 21, 2007, from 

http://www.nwea.org/assets/weblinked/DLReport%202007_11.pdf. 

Sympson, J. B., & Hetter, R. D. (1985). Controlling item-exposure rates in computerized 

adaptive testing. Proceedings of the 27th annual meeting of the Military Testing 

Association (pp. 973-977). San Diego, CA: Navy Personnel Research and Development 

Center. 

Thompson, T. (2007, April). Some Issues in Computing Conditional Standard Errors of 

Measurement for State Testing Programs. Paper presented at the Annual Meeting of the 

National Council on Measurement in Education, Chicago, IL. 



 Growth, Precision, and CAT 31 

Thompson, T., & Way, D. (2007, June). Investigating CAT Designs to Achieve Comparability 

with a Paper Test. Paper presented at the GMAC Conference on Computerized Adaptive 

Testing, Minneapolis, MN. 

Van der Linden, W. J., & Glas, C. A. W. (Eds.). (2000). Computerized Adaptive testing: Theory 

and Practice. Boston, MA: Kluwer. 

Wainer, H. (Ed.). (2000). Computerized adaptive testing: A Primer (2nd Edition). Mahwah, NJ: 

Lawrence Erlbaum Associates. 

Wang, W.-C., & Wu. C.-I. (2004). Gain score in item response theory as an effect size measure. 

Educational and Psychological Measurement, 64, 758-780. 

Willett, J.B. (1997). Measuring change: What individual growth modeling buys you. In E. Amsel 

and K. A. Renninger (Eds.), Change and Development: Issues of Theory, Method, and 

Application (pp. 213-243). Mahwah, NJ: Lawrence Erlbaum Associates. 

Williams, R. H., & Zimmerman, D. W. (1996). Are simple gain scores obsolete. Applied 

Psychological Measurement, 20, 59-69. 

Zimowski, M. F., Muraki, E., Mislevy, R. J., & Bock, R. D. (1999). BILOG-MG: Multiple Group 

IRT Analysis and Test Maintenance for Binary Items [Computer program]. Chicago, IL: 

Scientific Software International. 




