On occasion, the sample of students available for calibrating a set of assessment items may not be optimal. The sample may be small, unrepresentative, or even unmotivated, as is often the case when there are no direct consequences associated with performance (e.g., pilot or field-test administration). Each of these situations can be problematic within the context of Item Response Theory (IRT). For example, it has been demonstrated repeatedly that the accuracy and stability of IRT item parameter estimates decreases and root mean squared error (RMSE) and bias increase when small samples are used for calibration (e.g., Birnbaum, 1968; Swaminathan & Gifford, 1986; Swaminathan, Hambleton, Sireci, Xing & Rizavi, 2003). Small sample sizes are common in practice and may occur intentionally, as a means of reducing costs or limiting the exposure of newly developed items (e.g., CAT); or unintentionally, as the result of a voluntary sampling plan or an unforeseen administration issue (e.g., a snowstorm on the day the test is administered). Frequently, small N-counts are the direct result of unavoidable test design and administration features, as is the case when a relatively large number of forms must be administered to adequately field test a large pool of newly developed items.

Samples that do not represent the population may produce inappropriate parameter estimates by restricting the range of ability used for estimation. Research has shown that accurate item parameter estimation requires the use of a heterogeneous sample of students that adequately represents the range of abilities measured by the test (Hambleton, 1993). This requirement is a direct result of working in a regression setting.
In IRT, the conditional probability of a correct response on a given item is displayed by an item characteristic curve (ICC), the form of which is specified by a given mathematical model and defined by estimated parameters. For a given item, this curve is used to represent the regression of item score on student ability and remains the same regardless of the population of students administered the item. Since the ICC is intended to accurately represent item performance for the entire test-taking population, the entire range of abilities underlying this population must be represented in the initial item calibration. If the appropriate amount and range of information is not available, the true shape of the ICC may not be realized. Resulting parameter estimates will not display group-invariance properties or accurately represent the performance of the item for the total population of interest.

Most research in the IRT literature suggests that Bayesian estimates of item parameters are more accurate, reasonable, and consistent than maximum likelihood estimates especially when sample sizes are small and the two- or three-parameter logistic model is employed (e.g., Gao & Chen, 2005; Swaminathan & Gifford, 1982, 1985, 1986; Mislevy, 1986; Lord, 1986). Under these conditions, therefore, the question is not whether Bayesian procedures should be used, but how to specify prior distributions so that the most accurate item parameter estimates are obtained. To this end, researchers have explored incorporating collateral information about examinees and items into the parameter estimation process through the specification of more precise priors. In this context, collateral information is any information that serves to describe the characteristics of items or examinees, such as examinee group membership, cognitive
item features (i.e., processes required to answer an item correctly), or estimates of item
difficulty.

The theory behind the use of collateral information to support the specification of
priors is simple. Suppose a probability density function, \( f(a) \), is known for a given
parameter, \( a \) (e.g., item discrimination). If this is the only information available about \( a \),
the best guess for the value of \( a \) would be \( E(a) = \int_{-\infty}^{\infty} af(a)da \) or the mean of the
distribution of \( a \). If a collateral variable \( k \) (e.g., content classification) is shown to be
correlated with parameter \( a \), knowledge about the value of \( k \) improves the prediction of \( a \)
beyond that afforded by its expected value. Therefore, the conditional probability
distribution \( g(a|k) \) provides more accurate information about the likely range of values for
parameter \( a \) than the unconditional distribution \( f(a) \). The stronger the relationship
between \( a \) and \( k \), the less variable the conditional distribution, and the greater the
information about the likely value of the parameter. If several collateral variables
improve the prediction of parameter \( a \) beyond the use of \( k \) alone (as reflected in the
multiple correlation), the conditional distribution of the parameter given all of these
variables should improve estimation even further.

**Use of Collateral Information in Practice**

Research on the inclusion of auxiliary information in the estimation process has
produced extremely promising results, even suggesting that if the right information is
available (i.e., collateral variables that are highly correlated to an item’s operating
characteristics), reasonable item parameter estimates can be predicted before or in lieu of
pre-testing; that is, in the absence of student response data (Mislevy, Sheehan, & Wingersky, 1993).

Given such favorable results, one would think that including such information in the IRT parameter estimation process would be standard practice. However, for several reasons this does not appear to be the case. For one, the conditions under which procedures that incorporate collateral information provide gains over standard marginal maximum likelihood (MML) or Bayesian estimation procedures are not clear. For example, while research suggests the application of a data-informed prior improves estimation when samples are small, very little work has been done concerning the benefits of exploiting collateral information in the specification of unique item-level prior distributions, especially within the context of the three-parameter logistic (3-pl) model. Most research up to this point has focused on the specification of common priors for these parameters (independent of collateral information), or on the item-level specification of priors for $b$-parameters only, with varied results (Gifford & Swaminathan, 1990; Swaminathan, et. al., 2003). The effectiveness of a procedure that defines item-level priors for all parameters and all items remains to be explored.

A second possible explanation for the limited use of collateral information in practice is lack of accessibility to the procedures required to implement the required estimation techniques correctly and efficiently. Straightforward, user-friendly procedures (that make use well-defined statistical processes within readily obtainable commercial software) need to be delineated for identifying “useful” collateral information, specifying item level priors, and incorporating these priors into the estimation process. In this way, such procedures will be more likely utilized in practice.
A final reason for the limited use of these procedures is that the available research provides little information as to how, or if, different types of collateral information provide different degrees of improvement. Many possible sources of collateral item information have been proposed (e.g., judges, cognitive item features, test specification classifications, item forms); however, the extent of gains in estimation accuracy using each of these sources has not been addressed with a single dataset. Previous research, for instance, has demonstrated that more precise parameter estimates can be obtained from small samples when information about items’ cognitive features is incorporated into the estimation process (Mislevy, 1988), or when content specialists are used to inform the specification of priors (Swaminathan, Hambleton, Sireci, Xing, & Rizavi, 2003). The contribution of less expensive, more “readily available” types of information, of the type typically found in an item bank, has not been addressed. One would expect information about an item’s cognitive requirements, if accurately classified, to support parameter estimation better than more general information such as content classification or key, since the former is more likely correlated with the operating characteristics of the item. However, a panel of experts is typically required to define these features and classify each item accordingly—a time consuming and expensive task. General content and administration data, on the other hand, are available without additional cost.

The goal of the current research was to explore the benefits of incorporating different types (and combinations) of collateral information into the item parameter estimation process given samples that vary in size and representativeness, and using procedures that are relatively straightforward given commercially available software. Of specific interest was the extent to which readily available information, of the type
typically found in an item bank, might provide for reasonable and effective item
parameter prior distributions. For an English Language Arts assessment for example, this
would include information such as: item sequence and key; associated passage type,
length and readability, and item content classification (e.g., vocabulary, comprehension,
etc). In the current study, the influence of such readily available information on
estimation accuracy and precision was considered independently, and compared with
gains obtained when traditional maximum likelihood and Bayesian procedures were
applied, and with gains obtained when expert judgments regarding item operating
characteristics were considered.

Methodology

Data

Two different types of data were used in support of this research: scored student
response data from the census administration of an English Language Arts (ELA)
assessment, and historical item-level data from the item bank from which the items
associated with this assessment were selected. The student response data were the result
of a 64 item, multiple choice, criterion-referenced assessment (ELA CRT) administered
to all eligible seventh grade students in a moderately populated southwestern state. Of the
approximately 33,000 students tested, 83% and 12% reported their ethnicity as White and
Hispanic, respectively. The remaining 5% were Asian, African American, Pacific
Islander or Native American.

The associated grade 7 ELA item bank provided item-level data from one
embedded field-test and two operational administrations for a total of 183 unique items.
The item bank is a repository for all information associated with the given administration
of an item. This information can be organized into four different categories:
Using Item Bank Information

administrative (item sequence, session, key); content-related (standard and objective); passage-related (passage type, length, and difficulty); and performance-related (p-value, point biserial, IRT parameters, item fit). The first three categories of information are determined during item and/or test development. They will therefore be referred throughout this document as “readily available”. That is, no additional work is required beyond that typically done during item and test development to obtain this information for use in the specification of prior distributions.

Generation of Research Samples

To determine how the characteristics of the calibration sample interact with the estimation technique, 12 samples, varying both in size and in the extent to which they represented the total examinee population with respect to ethnicity, were selected from the population dataset. Based on previous research on Bayes estimation of item parameters, and the decision to use the three-parameter model, sample sizes of 100, 200, 500, and 1,000 were selected for use. Samples of each size were nested in three ethnic-representation categories that varied in terms of their degree of alignment to the population as a whole: representative, unrepresentative, and extremely unrepresentative. Given the extremely small number of Asian, African American, Native American and Pacific Islander examinees, students were classified as either Hispanic or Non-Hispanic. This simplified both the sample generation process and the interpretation of results.

To generate the representative samples, students were selected at random from the total population so that the proportions of Hispanic and Non-Hispanic examinees in each sample mirrored those in the total population (i.e., 12% and 88%, respectively).
Unrepresentative and extremely unrepresentative samples consisted of 50% and 90% Hispanic students, respectively.

**Estimation of “Baseline” Population Item Parameters**

To examine the differential impact of sample characteristics and collateral information on estimation accuracy, item parameters were estimated under a variety of conditions. Each set of estimated parameters was subsequently compared to a set of “baseline” parameters. In this case, the baseline item parameters against which all estimated values were compared were those previously estimated using *all* grade 7 students who participated in the census administration of the ELA assessment. Baseline parameters were estimated using BILOG-MG under the assumptions of a three-parameter logistic item response theory (IRT) model. For this assessment, a normal distribution was assumed for ability and a common Beta prior was applied to all \( c \)-parameters. Priors were not applied in the estimation of item difficulty or item discrimination.

**Parameter Estimation Conditions**

For each of the twelve samples previously defined, item parameter estimates were generated under several conditions which differed in terms of how (and/or if) collateral information was integrated into the parameter estimation process. The defining characteristics of each of these conditions are outlined in Table 1.

--------------------

Insert Table 1.

--------------------

The first column of this table provides the condition to which the remaining columns refer. The next five columns indicate the source of the information used in specifying item parameter prior means. Columns 7 and 8 indicate whether applied item parameter
prior distributions were common across items (Y) or uniquely determined for each item (N).

In the first condition, Bayes estimates of item parameters were generated using BILOG-MG’s default item parameter prior specifications. For the three-parameter model, this is a lognormal prior for the \(a\)-parameter with a mean of 0 and a standard deviation of 0.5; and a Beta prior for the \(c\)-parameter with ALPHA and BETA set to 6 and 16, respectively. Condition 1 emulates the specifications typically applied in practice when estimating item parameters under the three-parameter model; collateral information is ignored, but the importance of assigning a prior distribution to the \(a\)- and \(c\)-parameters is acknowledged.

In the second condition, the estimation rules applied in the generation of the “baseline” parameters were utilized (i.e., no priors for \(a\) and \(b\), and a BETA prior with parameters of ALPHA=5 and BETA=17 for \(c\)). Using the same estimation specifications applied during the population calibration allowed for the effect of sample size and representativeness on estimation accuracy to be considered independent of estimation technique.

In BILOG-MG, specific types of prior distributions are required for each parameter: lognormal for \(a\)-parameters; normal for \(b\)-parameters, and beta for \(c\)-parameters. For Condition 3, all of the unique items in the Grade 7 ELA item bank were initially used to generate distributions of log of \(a\)-parameters, \(b\)-parameters, and \(c\)-parameters. These distributions were subsequently reviewed for extreme values, or outliers, so that inappropriate values could be removed before analysis. Finally, the moments of each distribution were used to specify the parameters of the \(a\)-, \(b\)-, and \(c\)-
prior distributions. One prior distribution was specified for each type of parameter, and then applied to all items.

The ALPHA and BETA parameters used to specify the common Beta prior distribution for $c$ were calculated using the mean of the $c$-parameter estimates in the item bank and the equations for ALPHA and BETA provided in the BILOG-MG user’s manual (Zimowski, et. al., 2003): \(\text{ALPHA} = mp + 1\) and \(\text{BETA} = m(1-p) + 1\). In this equation \(p\) is the expected mean of the distribution, and \(m\) is a priori weight that defines one’s confidence in the prior information. Initially, the BILOG-MG default value of \(m=20\) was specified in the calculation of ALPHA and BETA. The reasonableness of these parameters was then assessed by identifying the resulting credibility interval around $c$ (using the tables in Novick & Jackson, 1974, p. 402), and determining how well it reflected the distribution of $c$-parameter estimates in the item bank.

In Condition 4 multiple regression was used to establish a prediction equation for each IRT parameter ($a$, $b$, and $c$) given the “readily available” collateral item variables as predictors. Correlations were used to rank order variables (or sets of variables) from most to least important with respect to a given parameter. Based on these rankings, a chunk-wise forward entry procedure was implemented to examine the incremental contribution of individual collateral variables to the regression model.Chunks were defined by the three different types of readily available information under consideration (i.e., administrative, content-related, and passage-related). Variables were incorporated into the estimation model if they were significant at \(p \leq 0.25\). Given the low correlations between collateral variables and parameters, the low risk of negative consequences associated with including minimally predictive variables in the model, and the fact that
these predictors are readily available, this entry criterion was considered appropriate for the current research.

The final prediction equation and its associated RMSE were used to generate individual item-level prior distributions for each type of parameter. For example, the following equation was determined to provide the best prediction of the $b$-parameter with the fewest number of variables:

$$
\hat{Y}_b = - 0.546 - 2.25 p1 - 1.47 p2 - 1.67 p3 + 1.69 so01 + 1.23 so02 + 1.47 so03 + 1.50 so04 + 1.30 so05 + 1.60 so06 + 1.94 so07 + 1.67 so08 + 1.39 so09 + 1.22 so10 - 0.188 so11 - 0.080 so12 + 0.00353 \text{position}
$$

where “$p1$-$p3$” are three dummy variables representing the four levels of the categorical variable passage-type; “$so01$-$so12$” are 12 dummy variables representing the 13 different content/skill objectives measured on the assessment, and “position” is the location of the item on the assessment. If the assumptions of the linear regression model hold, for every fixed combination of independent variables, $Y$ is normally distributed with mean $(\hat{Y}_b | p1 – p3, so01 – so12, \text{position})$ and standard deviation equal to the square root of the average squared deviation between obtained and estimated item parameters (RMSE). Therefore, for a given item, the $b$-parameter prior distribution was specified as

$$N \sim (\hat{Y}_j, \text{RMSE}),$$

where $\hat{Y}_j$ was unique to each item or set of items that are the same with respect to the variables in the model.

The same procedures were applied to define item-level priors for $a$- and $c$-parameters, with a couple of exceptions. The prediction equation for the $a$-parameter reflects the regression of the log of the $a$-parameters on the variables of interest. Since BILOG-MG requires the prior be specified in arithmetic rather than natural log units, the expected value of the parameter, as well as the RMSE, were transformed before use. The
Using Item Bank Information

prediction equation for the \( c \)-parameter was used to calculate the expected value of \( c \) for each item, providing for initial estimates of ALPHA and BETA (using \( m=20 \)) as previously defined. The associated credibility interval, given ALPHA and BETA, was then used to determine the appropriateness of these parameters given the range of “most-likely” values for \( c \), as suggested by the RMSE and the calculated expected value of the \( c \)-parameter.

Condition 5 also utilized the calculation of a prediction equation for each type of parameter. In this case, however, observed p-values were included as a predictor. Performance data such as p-values and point biserials are available in the item bank for all previously administered items; therefore, defining a prediction equation that includes these variables is relatively easy. For example, in Condition 5 the following equation was determined to provide for the best prediction of the \( b \)-parameter:

\[
B_{\text{prm}} = 3.07 + 0.00201 \text{position} - 5.27 \text{pvalue} - 1.06 p1 - 0.900 p2 - 0.953 p3 + 1.04 so01 + 0.777 so02 + 0.974 so03 + 1.01 so04 + 0.980 so05 + 1.00 so06 + 1.11 so07 + 1.05 so08 + 1.05 so09 + 0.971 so10 - 0.045 so11 - 0.036 so12
\]

In order to use this equation to specify priors for a new set of items, however, an estimated p-value must be available for each new item.

For the current study, a judgmental procedure was used to obtain estimates of item p-values. Eight ELA content experts from a large-scale testing organization were asked to independently estimate the proportion of students who would answer each item on the assessment correctly if it were administered to the total examinee population. For each item, the distribution of p-value ratings was reviewed for outliers. Subsequently, the mean p-value rating was selected for use in the previously established \( b \)-parameter prediction equation. Participating raters had experience in the development and review
of ELA test items, as well as the interpretation of classical item statistics such as the p-value and point biserial. Some raters had direct experience working with the specific standards and objectives associated with the assessment of interest. To obtain the best ratings possible, participating judges attended a brief training session intended to help them gain a better understanding of the assessment program, examinee population of interest, and estimation tasks before making their ratings.

Once prior distributions for item parameters were determined, BILOG-MG’s marginal maximum a posteriori (MMAP) procedure was used for item parameter estimation.

**Determining Estimation Accuracy and Precision**

To allow for the comparison of parameters across conditions, estimates were scaled by standardizing on theta, as described in Kolen and Brennan (2004). To explore the accuracy with which individual item parameters were estimated. First, within each condition, correlations between estimated and baseline parameter values were calculated to determine the extent to which they displayed the same relative order. Second, the square root of the average mean squared difference (over items) between estimated and baseline parameter values was obtained (RMSD).

The correlation coefficient and the RMSD jointly address how well baseline parameters can be reproduced; however, neither speaks to the issue of estimation precision. Such discussions require an analysis of standard errors. To facilitate an interpretation of the standard error in terms of gains in precision within each sample (e.g., small/representative), or reduction in the standard error, the estimated percentage gain in measurement precision relative to that obtained under the BILOG-MG default estimation
condition was computed. Percentage gain in precision (PGP) in the estimation of a given parameter was calculated for each item as described in Mislevy (1987),

\[ PGP_j = \left( 1 - \frac{s.e_{j\text{low}}^2}{s.e_{j\text{high}}^2} \right) \times 100, \]

where \( s.e_{j\text{low}} = \) the lower of the two standard errors being compared for item \( j; \)

\[ s.e_{j\text{high}} = \] the higher of the two standard errors being compared for item \( j. \)

If the inclusion of collateral information improves estimation precision, only positive gains should be noted in conditions 3-5. However if this is not the case, such that the lower valued standard error in the numerator is associated with Condition 1, the resulting percentage will be reported as negative. For each condition within a sample, the average percentage gain in precision over all items was reported so that comparisons across conditions could be made.

Consideration of the Simultaneous Effect of Item Parameters

The procedures outlined above are for estimating the accuracy and precision of individual item parameters given different samples and estimation conditions. Also of interest is how well the estimated parameters jointly recover individual item characteristic curves (ICCs), and the value of the test characteristic and test information functions at a variety of points on the latent ability scale (relative to those defined by the “baseline” parameters). To explore the similarity between the ICCs resulting from the “baseline” parameters and the estimated parameters, a weighted sum of the root mean squared differences between the ICCs at different points along the theta scale was calculated (assuming a normal distribution). Given the relationship between \( a-, b- \) and \( c- \) parameters
(i.e., how the size of one parameter affects the others) two sets of parameter estimates for
the same item may appear extremely different (based on relative size) but result in
equivalent ICCs along the bulk of the theta distribution (with the largest differences
occurring at the extremes where the fewest students are located). For this reason, a
weighted sum of the RMSD between the ICCs, rather than an average, was taken over
quadrature points. This resulted in one value summarizing the difference between the
ICCs over items and quadrature points for each sample/condition.

To summarize the difference between “baseline” and estimated test characteristic
curves, a weighted sum of the absolute differences between the values of the test
characteristic function at q specified quadrature points was computed. This index
provides information regarding the number of raw score points, on average, by which
estimated and baseline true scores differ. True score values are often used to support
scoring and equating, therefore, this index provides information about the extent to which
measurement error might be affecting these activities.

At a given theta value, or quadrature point, the value of the test information
function is a measure of the degree of precision in estimating theta afforded by the
selected set of assessment items. The test information function is often used in test
construction to support development of equivalent assessments (in terms of estimation
precision) from year to year, and ensure appropriate levels of measurement precision
along the entire range (or a few specified points) of the ability. To understand the extent
to which differences between estimated and baseline parameters might influence
estimation precision, a weighted sum of the absolute difference between the two
respective test information functions was calculated for each condition.
Results

Summary of Examinee Population and Research Samples

Table 2 summarizes the performance of the “baseline” examinee population on the grade 7 ELA assessment reviewed for this study. This is the population from which all research samples were subsequently selected.

In terms of raw scores, Hispanic students earned (on average) ten fewer points than Non-Hispanic students. In addition, their average estimated ability was approximately ¾ of a logit below that of their Non-Hispanic peers. Standard deviations for total scores and estimated abilities were slightly larger in the Hispanic sub-population; however, both groups displayed a significant degree of variability. Consequently, range restriction, with respect to student ability on the construct measured by this assessment, was not an issue in either sub-population.

For each of the twelve sample types (e.g., ‘small/representative”), relationships between sub-group means and standard deviations were comparable to those observed in the population. Such similarities are to be expected given the within sub-population random sampling procedure used to establish these samples. In addition, within a given sample size (e.g., 100, 200, 500, 1000) unrepresentative samples were consistently the most heterogeneous in terms of estimated ability and obtained raw score.

Summary of Preliminary Analyses

Several analyses were required to determine the prior distributions to be applied in the estimation of item parameters under each of the proposed estimation conditions.
Only Conditions 1 and 2, in which BILOG-MG default prior distributions and baseline calibration prior specifications were utilized, required no additional consideration before use. This section provides a summary of the data reviewed and analyses performed to define the prior item and ability distributions for the three remaining estimation conditions.

The final set of common item parameter prior distributions applied in Condition 3 are provided in Table 3. For comparison purposes this table also provides the BILOG-MG default and baseline calibration prior specifications. Together they represent the three varieties of common prior specifications (over items) used in this study.

Condition 3 and its associated item bank prior distributions differ from the other common prior conditions in three important ways. First, Condition 3 is the only common-prior condition (i.e., one in which the same prior is applied across all items) in which a prior is specified for the $b$-parameter. Second, relative to the default prior conditions, Condition 3 provides for a more informative $a$-parameter prior distribution (as suggested by the smaller standard deviation) with a lower expected value. Finally, the expected value of the $c$-parameter is much lower in Condition 3 than in the other common-prior conditions.

**Priors Based on Collateral Item Variables (Conditions 4 & 5)**

The percentage of total item parameter variance explained by each readily available collateral variable and each category of collateral information is provided in the top half of Table 4.
Of the readily-available variables (i.e., 1-5), content specification (i.e., measured skill or objective as defined by the test blueprint) produced the largest multiple correlation (percent explained variance) with log of $a$-parameter and $c$-parameter estimates. Given 13 different objectives represented by 12 dummy variables, however, the proportion of parameter estimate variance explained by this variable was only marginally significant (e.g., $0.20 < p < 0.25$). The variable “item position” provided for the most significant F-statistic with respect to explained $a$-parameter variance ($p<0.001$); and the categorical variable passage type (represented by 3 dummy variables) was the most significant with respect to $c$-parameter variance ($p<.02$). Passage-type also produced the most significant multiple correlation with estimated $b$-parameters ($p=.002$). The four different types of passages utilized for this assessment were: literary, functional, informational, and writing.

With respect to the final prediction equations used to estimate item-level prior means in Condition 4, the set of collateral variables selected for inclusion explained approximately 17%, 18%, and 15% of the variance in the item bank for estimated $a$-, $b$-, and $c$-parameters. The average squared deviation between predicted and observed parameter estimates (RMSE) applied as the common prior standard deviation for each type of parameter was 0.26, 0.71 and 0.08 for log of $a$, $b$ and $c$-parameters, respectively. In addition, correlations between predicted and baseline values were 0.05, 0.26 and 0.35 for the log of $a$-parameters, $b$-parameters, and $c$-parameters, respectively. This is not surprising. The small amount of $a$-parameter variance explained by the established regression model provided for a relatively homogeneous set of predicted $a$-parameters. This, in turn, resulted in small correlations between baseline and predicted values. On
the other hand, for both the $b$- and $c$-parameters there was a moderate correlation between predicted and observed values. This is true in light of the small percentage of variance accounted for by the regression model.

In Condition 5, p-values (i.e., 6 in Table 4) were considered in addition to readily-available variables in determining the prediction equations and RMSEs to be used in specifying item-level prior distributions. For $b$-parameter estimates, the contribution of the p-values, given the previously defined set of relevant “readily available” variables was extremely significant ($p<.0001$). While not nearly as influential, p-values also contributed to the explanation of $a$- and $c$-parameter variance above and beyond that previously accounted for by the readily-available variables. In Condition 5 the percentage of variance jointly explained by readily available variables and p-values, as represented by the applied prediction equations, was 23%, 85% and 16% for $a$-, $b$-, and $c$-parameters, respectively. Associated RMSEs were 0.26, 0.31, and 0.09; and correlations between predicted and baseline parameter values were 0.19, 0.24 and 0.31, respectively.

To make use of a prediction equation that includes p-values, estimates of these variables must be available for the set of items to be calibrated. In the current study, estimates of p-values were obtained using content expert ratings of item difficulty. One major problem with this technique is that ratings of item difficulty (or p-values) are not as reliable as observed p-values in predicting IRT parameter estimates, and therefore may not accurately represent the relationship (between observed p-values and IRT parameters) reflected in the regression model. This could produce inappropriate, biased estimates of prior means and (subsequently) estimated parameters, because the small RMSE
associated with a model using observed p-values will constrain estimates to a narrower range around their prior values.

To determine the appropriateness of the linear regression models defined for Conditions 4 and 5, standardized residual plots and histograms based on the predicted and observed parameter estimates in the item bank were reviewed. In general, results supported the standard regression assumption that errors are normally distributed with mean equal to zero. There were no extreme outliers; quantiles of residuals were comparable to quantiles of the normal distribution; and the shape of the residual histogram displayed the desired bell-shape. In consideration of these results, the prediction equations were deemed appropriate for use in generating item-level prior means and Beta parameters.

Table 5 lists the prior standard deviations applied in each of the estimation conditions examined for this study.

Smaller standard deviations imply more confidence in the prior mean as a predictor of the parameter, and consequently, a smaller range of “reasonable” parameter estimates. Since different Beta prior distributions were applied to each item in Conditions 4 and 5, the average ALPHA and BETA parameters over items were used to calculate a “typical” prior standard deviation for each of these conditions.

The $b$-parameter prior standard deviation applied in Condition 5 was clearly the smallest. With a value of 0.31 it was less than half the size of those applied in Conditions 3 and 4. This is to be expected given the noted strong relationship between observed p-
values and $b$-parameter estimates in the item bank, which resulted in a small RMSE. On the other hand, $a$-parameter prior standard deviations were similar across Conditions 3, 4, and 5 averaging approximately half the size of the prior applied under Condition 1. $C$-parameter prior standard deviations were extremely similar over conditions, differing on average by less than 0.01.

**Parameter Estimation Results**

Very few consistent results (across samples and conditions) were identified through the examination of correlations. In general, correlations increased as sample sizes got larger; however across samples and parameter types there was no one condition that provided for the highest correlations with baseline parameters. Estimated $a$-parameters showed moderate to large correlations with baseline parameters, ranging from 0.43 to 0.91. Correlations between estimated and baseline $b$-parameters were relatively high for all samples and all conditions (0.73-0.98). While these correlations did increase slightly with sample size, for the most part they were extremely similar across sample sizes and conditions. Correlations between estimated and baseline $c$-parameters were poor to moderate (-0.27 to 0.65). This is to be expected given the small range of operational values associated with this parameter, its tiny standard deviation (e.g., 95% of the $c$-parameters in the item bank fall between 0.03 and 0.31 and the standard deviation is only 0.09), and the restricted range of applied prior mean values.

RMSD plots for each condition and parameter type are provided in Figure 1.\(^1\) To lend some meaning to these values the average standard error of the estimate over items

---

\(^1\) Due to minor convergence problems, results are not presented for the $n=100$, very unrepresentative sample.
and conditions was computed for each sample. For example, the average standard error of the \( b \)-parameter estimates in the \( N=200 \), representative sample was 0.253. The RMSD associated with Condition 1 in this sample was 0.371. Estimated and baseline \( b \)-parameters for this sample and condition therefore differed on average, by approximately 1.5 standard errors.

For all samples and parameter types, Conditions 3 and 4, which made use of readily available collateral information about items, produced the smallest RMSD values. On average, these values were 0.50 to 0.75 standard errors smaller than those associated with Condition 1 (default priors). In fact, Condition 4 RMSD values for the two smallest sample sizes were often comparable to, or less than, the RMSD values for the two larger samples under both default and baseline prior conditions (i.e., Conditions 1 and 2). For example, Condition 4 RMSDs for the \( n=100 \), representative group were 0.182, 0.337, and 0.087 for \( a \)-, \( b \)- and \( c \)-parameters respectively. These RMSD values are smaller than those obtained in Condition 1 with a sample size of 500 for the \( a \)-parameter, 200 for the \( b \)-parameter, and 1000 for the \( c \)-parameter.

Within a sample type (e.g., representative) both RMSD values and standard errors tended to decrease as sample size increased. The effect of group representation on accuracy, however, was typically inconsistent, and differed by parameter type.

Simultaneous Consideration of all Estimated Parameters

Figure 2 provides a plot of the average difference in the ICCs generated using the estimated parameters and the baseline parameters from the total population calibration.

-----------------------------
Insert Figure 2
-----------------------------
Overall, Conditions 3 and 4 provided for the smallest average deviations between baseline and estimated ICCs. This was true across sample sizes and types. Within a sample type (e.g., representative, unrepresentative, very unrepresentative) differences in ICCs tended to decrease as sample sizes increased and within a sample size (e.g., 500), differences in ICCs tended to increase as samples became more unrepresentative of the population. In fact, medium sized samples \((N=500)\) that represented the population often provided for smaller ICC deviations than large unrepresentative samples. For example, in Condition 4 the ICC deviation for the \(N=500\), representative sample is 30\% smaller than the deviation associated with the \(N=1000\), very unrepresentative sample and equivalent to the deviation associated with the \(N=1000\), unrepresentative sample.

Figure 3 provides a plot of the weighted sum, over quadrature points, of the absolute difference in the value of the test information function.

Insert Figure 3

These deviations are intended to provide an index of how close the estimated test information function (as calculated using the estimated parameters from each condition) came to the “baseline” test information function. They do not offer any information regarding directionality; that is, whether a particular condition provided for more or less information (on average) than that obtained in the baseline calibration. This was done intentionally. Information is calculated as a function of item parameters and theta, and the value of the information function is typically greatest at that point on the underlying scale where the most items are located. Consequently, a condition that results in a homogeneous set of parameter estimates with difficulties concentrated around the middle
of the theta scale could produce larger values of information around this area of the scale than those calculated with the baseline parameters. Since the estimates do not accurately reflect the “true” or baseline parameters, however, this increase in information would not imply the estimated parameters are better, or more precise, than the baseline parameters. The difference between these two values is simply a way of looking at the extent to which results based on estimated parameters deviate from results based on baseline parameters.

In all conditions that made use of collateral item information (i.e., 3, 4, 5), deviations were substantially smaller than those seen in Conditions 1 and 2. Condition 4 deviations in the smallest sample \( n=100 \) were all less than the deviations obtained with the largest sample in Conditions 1, 2, or even 3. In addition, Condition 1 deviations which utilized default BILOG-MG priors were, on average, 4.5 times larger than those seen in Condition 4. Also noteworthy is the fact that test information deviations tended to increase as samples became more unrepresentative. This was true over sample sizes and conditions, but was most pronounced in those conditions for which collateral information was not used in the specification of priors (i.e., 1 and 2).

The weighted sum (over quadrature points) of the absolute difference in the value of test characteristic function (estimated true score) based on baseline and estimated parameters is plotted in Figure 4.

---

Insert Figure 4
---

Trends in TCC deviations were extremely similar to those identified for test information: over sample sizes and types, Condition 4 provided for the smallest TCC deviations, and
TCC deviations increased as sample size and sample representation decreased. For a given sample, Conditions 3, 4, and 5 deviations often differed by only one-tenth of a raw score or less. Condition 1 deviations, however, were typically one-half to three-fourths of a raw score point greater than those obtained in Condition 4.

Percentage Gained in Precision – Reduction in Standard Error

For each condition, the percentage gained in precision (PGP) was calculated with respect to the standard errors associated with the parameter estimates from Condition 1. Condition 1 estimates represent those that would typically be obtained in practice if no collateral information was used to support the specification of prior distributions. It was expected that those conditions in which the most informative priors were specified would provide for the largest gains in precision, (or smallest standard errors), since estimates were constrained to a smaller range of possible values. Since the more informative priors were typically associated with the collateral item information conditions (3-5), it was expected that for these conditions gains would be mainly positive. Of greater interest, therefore, was: 1) How did conditions with similar prior standard deviations compare in terms of gains in precision, and 2) What, if any, patterns were observable within a given condition?

The prior standard deviations applied in each estimation condition are provided in Table 5. A-parameter prior standard deviations in Conditions 3-5 were all relatively similar (i.e., 0.30, 0.26, and 0.26, respectively) compared to the larger prior standard deviation applied in Condition 1 (i.e., 0.60). For the b-parameter, the specified prior standard deviation was the same in Conditions 3 and 4 (i.e., approximately 0.72), relatively small in Condition 5 (i.e., 0.31, for n=64), and not specified in Condition 1.
On average, $c$-parameter prior standard deviations were smaller in Conditions 3-5 than in Condition 1.

Figure 5 presents the average percent gained in precision (over items) relative to Condition 1 for each parameter-type by sample size and condition.

In general, small samples benefited the most from the utilization of collateral item information (in terms of PGP). Within a given sample type (e.g., representative, unrepresentative), PGPs tended to decrease as sample sizes increased. This was true for all three types of parameters, but most pronounced for $a$- and $c$-parameters. In addition, those conditions in which the smallest prior standard deviations were applied showed the largest gains in precision relative to Condition 1. This was Conditions 4 and 5 for $a$-parameters, Condition 5 for $b$-parameters, and Condition 4 for $c$-parameters. To some extent these results reflect the degree to which parameters were constrained in estimation. For example, Condition 5 led to the least accurate estimates of $b$-parameters in terms of correlations and RMSDs, but provided for the largest gains in precision.

Finally, although very similar prior standard deviations were applied in Conditions 3 and 4 for the $a$- and $b$-parameters, gains in precision were consistently higher in Condition 4. That is, in terms of PGP the use of collateral information to specify item-level prior means improved estimation precision beyond that obtained through the use of a common prior.
Summary

The overall goal of the current study was to explore how and if collateral variables and information of the type typically found in an item bank, associated with a test blueprint, or collected as part of a test administration, could be used to improve item parameter estimation through the specification of more appropriate item parameter prior distributions. In addressing this overall goal, several smaller research questions were identified. These are addressed in turn in the remainder of this section:

1. Is parameter estimation in general influenced by sample size and sample representation?

Results suggested that both sample size and sample representation influence parameter estimation. Within a sample type (representative, unrepresentative, very unrepresentative), correlations between estimated and baseline parameters tended to increase and deviations (RMSD, ICC, Test Info, TCC) tended to decrease as sample sizes increased.

This study provided little definitive information regarding the manner in which sample representation influences the estimation of different types of item parameters. There were two reasons for this. First, since only one sample was developed to represent each sample size/representation condition, the effect of sampling error on estimation is unknown. That is, it is unclear whether the results from a given sample are representative of the results that would be observed with other samples of the same type. Second, due to the similarity of Hispanic and Non-Hispanic students (with respect to observed ability distributions), misrepresentative samples did not display those features shown to have a negative effect on estimation, such as range restriction or skew (with respect to estimated ability) (Ree, 1979). In fact, under some conditions, the characteristics of the
Using Item Bank Information

unrepresentative samples often served to improve estimation. Consequently, trends, when identified, were often isolated to a particular type of parameter, index of accuracy, and sample size; making them extremely difficult to interpret.

Although the effect of sample misrepresentation was often difficult to interpret at the parameter level, at the test level some trends did emerge. In general, deviations between test characteristics based on estimated and baseline parameters (e.g., information/estimated true scores) increased as sample representation decreased. This was true for all sample sizes, suggesting that the potential influence of sample misrepresentation on estimation cannot be ignored simply because one has a large sample.

One possible explanation for this finding is a decrease in model fit for samples that do not represent the population. For example, if the model fit less well for Hispanic compared to Non-Hispanic students, samples in which Hispanic students were over-represented would show greater model misfit. This would, in turn, have a negative impact on the accuracy of item parameter estimates. Similarly, if differential item functioning was a major problem, overrepresentation of the affected subpopulation would have a negative impact on the accuracy of estimation. While model fit by ethnic group was not explored in the current study, all items were reviewed for differential item functioning.

2. Does the use of readily available collateral item information to support the specification of priors consistently improve estimation accuracy and precision? How does this differ depending on the characteristics of the sample?

In this study, the conditions that utilized collateral item information in the specification of priors (i.e., Conditions 3, 4, and 5) produced the most accurate and
Using Item Bank Information

precise estimates of parameters over sample sizes and types. Although correlations provided no consistent information, average squared deviations between estimated and baseline parameters from these conditions were consistently smaller (over all samples and both test lengths) than those obtained under other conditions. Similarly, deviations between baseline and estimated item characteristic curves, test characteristic curves, and test information functions were noticeably smaller for the collateral information conditions.

For the current study, item-level priors and standard deviations based on readily available collateral information (Condition 4) were quite similar to (albeit a little smaller than) the common item bank priors. This is likely due to the small percentage of parameter variance explained by the collateral variables and regression to the mean. Consequently, these conditions provided for very similar results with respect to correlations, RMSDs and ICC deviations. However, in terms of test information and TCC deviations Condition 4 did provide for slightly more accurate results.

The extent to which collateral information improved estimation accuracy (relative to default conditions) did not appear to differ by sample size. On average, gains were about the same for all sample sizes. This is readily apparent through a review of RMSDs. While deviations between estimated and baseline parameters were significantly smaller in Condition 4 compared to Condition 1, the extent to which these deviations differed (in standard error units) did not consistently increase as sample size decreased. $B$-parameter deviations from Condition 1 might be three-tenths of a standard error larger than Condition 4 deviations when $N=200$, but six-tenths of a standard error larger when $N=1000$. Similar results were noted for ICC and TCC deviations. The ratio of
Condition 1 to Condition 4 deviations did not consistently increase as sample size decreased. Only with respect to test information did this ratio show a slight tendency to increase as sample size decreased.

Similarly, the extent to which collateral information improved estimation did not appear to be related to sample representation. All sample types benefited from the use of priors based on collateral information such that within a sample size, ratios of Condition 1 to Condition 4 deviations did not consistently increase as samples became more unrepresentative. The only exception to this was test information, for which these ratios did show a tendency to increase as sample representation decreased.

Although gains in estimation accuracy afforded by the use of collateral variables (relative to Condition 1), were not affected by group representation; the stability of the results provided over different types of samples was. That is, use of a prior informed by collateral information significantly lessened the (typically) negative effect of sample representation on estimation. This was apparent mainly at the test level, through a review of TCC and test information deviations. Within a given sample size, the difference between test information deviations for unrepresentative and representative groups was 2 to 10 times greater in Condition 1 than Condition 4. Similarly, differences between very unrepresentative and unrepresentative groups were 6 to 13 times larger in Condition 1 compared to Condition 4. Similar findings were obtained with respect to TCC deviations. The use of prior distributions informed by collateral variables resulted in more stable results across sample types.

3. Does the use of content-expert ratings of item difficulty improve the quality of estimated parameters when used in conjunction with readily-available variables to define item prior distributions?
In the current study, the use of content-expert ratings provided little value beyond that afforded by readily available collateral variables. This was due to the difficulty of the rating task and the accuracy of the resulting ratings in comparison to observed p-values. Since p-value ratings were not as reliable as observed p-values for predicting the values of parameter estimates, regression models developed using observed p-values did not improve estimates of prior means as intended (especially for $b$-parameters). In addition, given the strong relationship between observed p-values and $b$-parameters, applied $b$-parameter prior standard deviations were extremely small resulting in less accurate estimates of parameters than were obtained in the other collateral information conditions. Since the $b$-parameter is relatively resilient to different prior specifications (Swaminathan & Gifford, 1982; Gao & Chen, 2005), however, the overall influence of these priors on test and item characteristics was minimal and these estimates still recovered item and test characteristics better than did estimates generated under the non-collateral item information conditions (i.e., Conditions 1 and 2).

Together these results suggest that the use of content expert ratings may improve the quality of estimated parameters, however the degree of improvement depends on their accuracy and the manner in which they are used. Since accurate and reliable ratings of item difficulty are difficult to obtain, and may be of only limited usefulness, gathering this information for the sole purpose of informing prior distributions is not recommended. If, however, difficulty ratings of some sort are available (from a standard setting or some other kind of committee meeting) and one has a high degree of confidence in their accuracy, they may be considered for use as described above (or in some other fashion).
4. Do more informative priors always lead to item parameter estimates having smaller standard errors? Are smaller standard errors always associated with more accurate estimates of baseline parameters?

   In general, for those conditions in which a prior distribution was specified for item parameters, the more informative the prior (i.e., the smaller the standard deviation), the greater the gain in estimation precision. This was true even when the estimated parameters were less accurate than those obtained in other conditions.

   Discussion

   Consistent with previous research (e.g., Swaminathan, et. al., 2003; Mislevy, 1988) the results of the current study show that using collateral item information to inform item prior specifications provides for improved estimates of item parameters. Both common priors based on item bank means and standard deviations, and item-level priors based on collateral item-variables, provided for more accurate and precise estimates of parameters than were obtained in other conditions. The fact that priors based on collateral information provided better estimates than the use of BILOG-MG default priors is, in and of itself, an important finding for two reasons. First, BILOG-MG item prior specifications are not uninformed or arbitrary; they are based on the program authors’ experience and educated opinion regarding which prior distributions are appropriate in most situations in the absence of other useful information. And second, these are the prior specifications most often applied in practice.

   Of particular interest is the fact that the consideration of readily available collateral variables, of the type that would always be available for a test item (ie., key, position, reportable content category), provided better estimates of parameters than those obtained in other conditions. This is true in light of the fact that these variables explained
a relatively small percentage of parameter variance (less than 17%), suggesting that even a little good information is better than no information when it comes to the specification of priors.

The use of item difficulty ratings in addition to readily available variables has the potential for further improving estimation. Swaminathan (2003) showed that transformed estimates of item difficulty ratings improved estimates of $a$-, $b$-, and $c$- parameters when applied as prior means for $b$-parameters. The current study used regression procedures to incorporate p-value ratings into the specification of prior means for $b$-parameters as well as $a$- and $c$- parameters. Although p-value ratings were only slightly correlated with observed p-values, priors generated in consideration of these ratings (Condition 5) typically provided better estimates of item and test characteristics than did default priors. The fact that improved estimates were obtained in light of these issues, suggests that the defined regression procedure for establishing prior means in consideration of p-value ratings may be appropriate under some conditions (e.g., when one has a great degree of confidence in the ratings and a procedure for establishing the accuracy of the raters as a group). Even then, however, a prior standard deviation based on something other than the RMSE may be required.

The benefits of using collateral information in terms of gains in estimation precision were readily apparent in the current study. The use of collateral information reduced the standard errors of parameter estimates from those obtained under default conditions. This was true in light of the relatively small percentage of parameter variance explained by these variables. Percent gains in estimation precision varied by parameter type, but consistently increased as sample size decreased. These gains were
often quite large, ranging from 23% for $c$-parameters to 26% for $b$-parameters to 60% for $a$-parameters ($N=100$).

Overall, results provide support for the use of any high quality collateral information that may inform the value of item operating characteristics. The call for “high quality” information is not to be taken lightly. The use of item bank data, for example, will only provide better prior specifications if the data in the bank are accurate and representative of the parameters to be estimated.

Limitations

There are several limitations associated with the current study that constrain the generalizability of results and suggest the need for further research. First, real, rather than simulated, data were used to estimate item parameters; therefore true parameter values were not known. Instead, estimates from the baseline calibration were treated as “true”, or at least as the best estimates possible. In reality these estimates could contain error related to lack of model data fit, item dependence (since items are passage-based), differential item functioning (DIF), or other factors. In addition, only a single sample was selected to represent each of the twelve sample size/ethnic representation combinations of interest to this study. This limits the generalizability of results because the effect of sampling error is unknown. Further, this design does not allow for the examination of deviations between estimated and baseline parameters in terms of separate bias and sampling error components. For this reason, while Condition 4 may provide for smaller RMSDs between estimated and baseline parameters (for example), it is not known that this condition produces “better” results. These estimates may still be more biased than those obtained under other conditions.
The conditions of this study should be replicated using simulated data and multiple samples. In this way, true item parameters and student abilities would be known, model fit would not be an issue, and deviations between true and estimated values could be interpreted in terms of bias and sampling error components. In addition, by simulating data sets, a variety of different sample characteristics could be modeled with respect to the underlying theta distribution. This would provide cleaner, potentially more generalizable results regarding the effects of sample characteristics on estimation accuracy.

A second limitation relates to the PGP index. Because it is tied directly to the size of the prior standard deviation, percent gained in precision (as calculated) is not a particularly good indicator of the quality of the applied estimation procedure and resulting parameters. In fact, in isolation, such an index may provide for misleading results regarding which prior specification and estimation procedure is most effective. Consequently, an index that reflects gains in precision afforded by the use of an informative prior, but is not itself defined by that prior, needs to be identified. Consideration of the entire posterior distribution associated with a parameter, for example, may provide for a useful index.

A final issue relates to the fact that BILOG-MG (and other programs like it) often define item parameters in terms of point-estimates from posterior distributions. This, however, is not the preferred Bayesian procedure for estimating parameters because it does not use the entire posterior distribution. Rather, an empirical Bayes approach in which simulated observations from a Markov Chain are used to make inferences about IRT item parameters might be endorsed (Patz & Junker, 1999). Although some research
has shown Markov Chain Monte Carlo (MCMC) procedures to be superior to those implemented in BILOG in terms of IRT model fit (Jones & Nediak, 2000), for the most part, the use of such procedures is currently limited to complex IRT models (e.g., multi-dimensional). Additional research is required to explore the potential benefits of using MCMC procedures for the estimation of IRT parameters in general, and in light of available collateral item and examinee information.

Conclusion

This study provided evidence for the use of collateral item information in the specification of item prior distributions. In addition, it outlined a relatively straightforward regression procedure for utilizing this information to define prior distribution parameters. While the procedures discussed are based the use of BILOG-MG for calibration, they can easily be adapted to support the requirements of other related IRT calibration software.

The benefits of using high quality, readily available item information to improve the specification of item prior distributions are clear: improved estimation accuracy and precision for samples of all types and sizes. Up to this point, however, the specific context within which procedures using collateral information might be applied has not been discussed. There are a range of item parameter estimation situations for which these procedures may be appropriate. These situations vary in terms of the stakes associated with inappropriate estimation, and the degree to which the procedures generalize over assessment programs and materials. One situation for which these procedures seem extremely appropriate is to support the estimation of field-test item parameters intended
for use in test development activities. More debatable situations for the use of collateral information include supporting:

- the estimation of item parameters to be used in scaling and/or equating activities;
- the estimation of operational item parameters that will be used for scoring examinees; and
- the use of collateral information from one assessment program to support the specification of prior item parameter distributions for another assessment program (for use in test development, scaling, equating, or scoring activities).

Further research is required to understand the range of situations to which these procedures may apply.
References


Table 1. Parameter Estimation Conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Source of Item Parameter Prior Information</th>
<th>Common Prior Over Items?</th>
</tr>
</thead>
<tbody>
<tr>
<td>BILOG-MG Defaults</td>
<td>Population Baseline Calibration</td>
<td></td>
</tr>
<tr>
<td>BILOG-MG Defaults</td>
<td>Item Bank Parameter Means and SDs</td>
<td></td>
</tr>
<tr>
<td>BILOG-MG Defaults</td>
<td>Readily Available Collateral Variables</td>
<td></td>
</tr>
<tr>
<td>BILOG-MG Defaults</td>
<td>Readily Available &amp; Difficulty Ratings</td>
<td></td>
</tr>
<tr>
<td>BILOG-MG Defaults</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>BILOG-MG Defaults</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>BILOG-MG Defaults</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>

Table 2. Summary of Population Performance on Total Test

<table>
<thead>
<tr>
<th>Source of Prior</th>
<th>Bayes Estimate of Ability (EAP)</th>
<th>Total Score (n=64)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
</tr>
<tr>
<td>Total Population</td>
<td>33347</td>
<td>0.000</td>
</tr>
<tr>
<td>Not Hispanic</td>
<td>29484</td>
<td>0.089</td>
</tr>
<tr>
<td>Hispanic</td>
<td>3863</td>
<td>-0.680</td>
</tr>
</tbody>
</table>

Table 3. Common-Prior Means and Standard Deviations by Source

<table>
<thead>
<tr>
<th>Source of Prior</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default BILOG-MG Priors (Condition 1)</td>
<td>N(1.13, 0.60)</td>
<td>none</td>
<td>Beta(6,16)</td>
</tr>
<tr>
<td>Population Baseline Calibration Priors (Condition 2)</td>
<td>none</td>
<td>none</td>
<td>Beta(5,17)</td>
</tr>
<tr>
<td>Item Bank Parameter Estimate Means and SDs (Condition 3)</td>
<td>N(0.84, 0.30)</td>
<td>N(-0.58, 0.75)</td>
<td>Beta (3.4, 13.6)</td>
</tr>
</tbody>
</table>
Table 4. Percentage of Item Parameter Variance Explained by Collateral Variables

<table>
<thead>
<tr>
<th>Variable(s)</th>
<th>$b$-parameter</th>
<th>Log of $a$-parameter</th>
<th>$c$-parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Position</td>
<td>0.35</td>
<td>5.82</td>
<td>0.02</td>
</tr>
<tr>
<td>2. Key</td>
<td>1.24</td>
<td>1.15</td>
<td>3.64</td>
</tr>
<tr>
<td>3. Passage type*</td>
<td>8.13</td>
<td>1.81</td>
<td>5.40</td>
</tr>
<tr>
<td>4. Passage length</td>
<td>0.22</td>
<td>0.23</td>
<td>0.82</td>
</tr>
<tr>
<td>5. Skill/Objective (Content-related)</td>
<td>6.38</td>
<td>8.55</td>
<td>8.22</td>
</tr>
<tr>
<td>Administration-related (1&amp;2)</td>
<td>1.56</td>
<td>7.28</td>
<td>3.65</td>
</tr>
<tr>
<td>Passage related (3&amp;4)</td>
<td>8.39</td>
<td>2.06</td>
<td>5.43</td>
</tr>
<tr>
<td>All readily-available (1-5)</td>
<td>20.79</td>
<td>17.48</td>
<td>15.62</td>
</tr>
</tbody>
</table>

6. P-value                            | 82.15         | 8.89                 | 2.62          |

*The four passage types utilized for this assessment were: Functional, Literary, Informational, and Writing.

Table 5: Item Parameter Prior Standard Deviations for $a$-, $b$-, and $c$-Parameters

<table>
<thead>
<tr>
<th>Source of Priors</th>
<th>Condition applied</th>
<th>$a$</th>
<th>$b$</th>
<th>$c$</th>
</tr>
</thead>
<tbody>
<tr>
<td>BILOG-MG defaults</td>
<td>1</td>
<td>0.60</td>
<td>NA</td>
<td>0.094</td>
</tr>
<tr>
<td>Baseline calibration</td>
<td>2</td>
<td>NA</td>
<td>NA</td>
<td>0.087</td>
</tr>
<tr>
<td>Item Bank</td>
<td>3</td>
<td>0.30</td>
<td>0.75</td>
<td>0.087</td>
</tr>
<tr>
<td>Readily available variables</td>
<td>4</td>
<td>0.26</td>
<td>0.71</td>
<td>0.080</td>
</tr>
<tr>
<td>Readily available variables and p-values</td>
<td>5</td>
<td>0.26</td>
<td>0.31</td>
<td>0.092</td>
</tr>
</tbody>
</table>
Figure 1. RMSD between Estimated and Baseline Parameters
Using Item Bank Information

C-Parameter RMSDB

1 - Default Priors
2 - Baseline Priors
3 - Common item priors
4 - Readily available vars
5 - All vars
Figure 2. Average Difference between Item Characteristic Curves (ICCs)
Figure 3. Average Difference in Value of Test Information Function
Figure 4. Average Difference between Test Characteristic Curves
Figure 5. Percent Gained in Precision
Using Item Bank Information

C-par PGP

- Baseline Priors
- Common item priors
- Readily available vars
- All vars